A Computational Framework for Determining Square-maximal Strings

نویسندگان

  • Antoine Deza
  • Frantisek Franek
  • Mei Jiang
چکیده

We investigate the function σd(n) = max{s(x) | x is a (d, n)-string}, where s(x) denotes the number of distinct primitively rooted squares in a string x and (d, n)string denotes a string of length n with exactly d distinct symbols. New properties of the σd(n) function are presented. The notion of s-cover is presented and discussed with emphasis on the recursive computational determination of σd(n). In particular, we were able to determine all values of σ2(n) for n ≤ 53 and σ3(n) for n ≤ 42 and to point out that σ2(33) < σ3(33); that is, among all strings of length 33, no binary string achieves the maximum number of distinct primitively rooted squares. Noticeably, these computations reveal the unexpected existence of pairs (d, n) satisfying σd+1(n + 2) − σd(n) > 1 such as (2,33) and (2,34), and of three consecutive equal values: σ2(31) = σ2(32) = σ2(33). In addition we show that σ2(n) ≤ 2n− 66 for n ≥ 53.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Computational Framework for Determining Square-maximal Strings a Computational Framework for Determining Square-maximal Strings *

We investigate the function σd(n) = max{s(x) | x is a (d, n)-string}, where s(x) denotes the number of distinct primitively rooted squares in a string x and (d, n)-string denotes a string of length n with exactly d distinct symbols. New properties of the σd(n) function are presented. The notion of s-cover is presented and discussed with emphasis on the recursive computational determination of σ...

متن کامل

A One-Sided Zimin Construction

A string is Abelian square-free if it contains no Abelian squares; that is, adjacent substrings which are permutations of each other. An Abelian square-free string is maximal if it cannot be extended to the left or right by concatenating alphabet symbols without introducing an Abelian square. We construct Abelian square-free finite strings which are maximal by modifying a construction of Zimin....

متن کامل

On the structure of run-maximal strings

a r t i c l e i n f o a b s t r a c t We present a combinatorial structure consisting of a special cover of a string by squares. We characterize the covering property of run-maximal strings, i.e. strings achieving the maximal number of runs. The covering property leads to a compression scheme which is particularly efficient for run-maximal strings. It also yields a significant speed improvement...

متن کامل

A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem.  At each step of ALS algorithms two convex least square problems should be solved, which causes high com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012